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V. CoNCLUSIONS

The finite-element method for cylindrical polar geome-
tries has been developed and applied to circular and sector
waveguides to establish rates of convergence and absolute
errors in cross sections with and without singular points.
The mode structure of the double-ridged waveguide has
been established for various symmetries and it is concluded
that the waveguide has the advantages over the circular
waveguide of 1) reduced cutoff frequency and wave
impedance and 2) increased bandwidth. The most general
type of waveguide in polar geometry directly solvable by
this method has spiral boundaries. Examples of these have
been given and particular cases studied. It is clear that
other geometries not described here but nevertheless
interesting might also be solved by the method. There is,
for example, a whole class of problems involving coaxial
structures where the solution of Laplace’s or Helmholtz’s
equation might be required. This generalization of the
usual finite-element method allows boundaries linear in an
78 coordinate system to be treated exactly and effectively
removes from consideration the need to treat [117] trunca-
tion error at curved boundaries.
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The Solution of Inhomogeneous Waveguide Problems

Using a Transmission-Line Matrix

PETER B. JOHNS

Abstract—A method of applying the transmission-line matrix
method to inhomogeneous wavegiiide structures is described. The
technique uses open-circuit stubs of variable characteristic im-
pedance at each node in the matrix, thereby providing an analog for
a dielectric. LSE and LSM modes in rectangular waveguides, and
problems involving a step of dielectric are solved. Results are given
in terms of the cutoff frequency and field pattern for continuous
waveguides, and the waveguide input impedance for scattering
problems.

INTRODUCTION

HE transmission-line matrix method has been used
to solve scattering problems in waveguides [17] and
also to obtain the cutoff frequencies for waveguides of
arbitrary cross section [27]. In both cases, the waveguides
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were assumed to be filled with a homogeneous medium.
In applying the principles of the transmission-line matrix
method to random walk analysis [37], results were ob-
tained for a one-dimensional inhomogeneously filled wave-
guide. However, there is a large class of inhomogeneous
waveguide problems that require solution in two space
dimensions and an application technique for the trans-
mission-line matrix method in such eases is introduced
in this paper.

Matrix CONFIGURATION AND PROPERTIES

In [17] and [2], propagation in a two-dimensional me-
dium is represented by the voltages and currents on a
Cartesian mesh of TEM transmission lines. Analysis of
the mesh is accomplished by considering an impulsive
excitation and following the progress of impulses as they
propagate throughout the matrix. The mesh is represented
at each node by a submatrix of four numbers describing
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the magnitude of the incident voltages along the four
coordinate directions. The matrix as a whole consists of
a number of submatrices corresponding to the number
of nodes in the mesh. Thus, if the voltage impulses incident
on a node at time k are represented by

Vi)#
Vs

Vs

TV
and at time &k + 1, they become reflected pulses
AN

Ve

Vs

ki1 Va

Then, in [ 17, it is shown that

Vil —1 1 1 1 Vils
Vs 1 1 —1 1 1 Vs
=3 (1)
Vs 1 1 -1 1 Vs,
Ve 11 1 =147

The reflected pulses from each node then become inci-
dent pulses on neighboring nodes and the process is re-
peated on an iterative basis. Each iteration corresponds
10 a unit of time which is the time required for pulses to
travel from one node to its neighbor.

In the new matrix proposed, an additional length of
line or stub is introduced to the mesh as shown in Fig. 1.
The stubs are open circuit and of length Al1/2, where Al
is the distance between nodes. They are of variable char-
acteristic admittance (Y,) relative to the unity character-
istic admittance assumed for the main matrix of trans-
mission lines, There are now five voltage pulses incident
on each node, four from the lines as in the original formula-
tion (Vy, Vi, V3, and V), and one from the stub (V).
Pulse analysis for each node gives the new version of
(1) as

Vilr —(Yo+ 2) 2
Ve 2 —~ (Yo +2)
: 1
V =
3 Vo x4 2 2
V4 2 2
k+1LV5J L 2 2
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Reflected pulses on the lines become incident pulses on
neighboring nodes as before. The reflected pulse on the
stub becomes the new incident pulse on the node from
the stub, since the stub length is A1/2 and pulses are
reflected from the open circuit at the end.

At low frequencies, the effect of the stub is to add to
each matrix node an additional lumped shunt capacitance
of CY,Al/2. C is the total shunt capacitance per unit
length of the main matrix of lines that are of unity char-
acteristic admittance. The total shunt capacitance at each
node therefore becomes 2CA1(1 + Y,/4) and the low fre-
quency velocity of waves on the matrix (v,) is given by

C2

®
T 201 F Yo/t ®
where ¢ is the free space velocity of waves. Thus the
velocity of waves on the matrix is now made variable
simply by altering the value of the single constant Y.

As the frequency increases, the fact that the stub is a
distributed capacitance and not lumped (as assumed
above) becomes important. An exact analysis is needed
to establish the range of frequencies over which (3) is
sufficiently accurate. This is carried out by considering
propagation of plane waves parallel to one of the matrix
coordinates and diagonally across the matrix as in [17.
The following transmission equations connect the input
voltages and currents (V, and I,) with the output voltages
and currents (Vi3 and I..,) of one cell of the periodic
structure involved. For propagation in the direction of
one of the matrix coordinates the equation is

Vi> < cos 8/2 jsin@/2 1 0>
I; Jjsin8/2 cos8/2 /\2j(1 + Y,o/2) tan 9/2 1
cos0/2 jsin0/2\/Via

jsin6/2 cos6/2 /\I.1

For diagonal propagation, the equation becomes

V. cos0/2 jsinf/2 1 0
I; B jsin8/2 cos6/2/\jY,/2tan8/2 1
cos 0/2 7sinb/2\/Via
‘<jsin0/2 cos0/2><1¢+1>‘
2 2 2Y, Ak
2 2 2Y, Vs,
— (Yo + 2) 2 2Y, Vs (2)
2 —(Yo+2) 2V, v,
2 2 (Yo—4) | V5
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Fig. 1. Transmission-line matrix with open-circuit stubs.

In these equations

wAl 2rAl

0= — = ———

c A

The phase constant for the matrix (B8.) is therefore
given by

sin? <5”A1) _ 21 + Yo/4) sin? ("’—Al>
2 2¢

for propagation in the direction of the matrix coordinates

and
sin? (@l) = (1 + Yo/4) sin (ﬁA_1>
2 2¢

Z

(4)

(5)

for diagonal propagation.

The velocity (v,) of waves on the matrix relative to the
free space velocity (¢) for various values of Y, corre-
sponding to (4) are plotted in Fig. 2. These characteristics
show that as the low frequency velocity (vs) is reduced
by the action of the stubs, so the usable frequency range
also reduces. Cutoff always occurs first in the direction of
the coordinates and is given by the expression

(A].) 1 . (vno)
— = —sin1{—].
A cutoff ™ ¢

To cover a certain distance in a diagonal direction on
the transmission-line matrix, the waves traveling along
the component transmission lines have to cover V2 times
the distance. However, (4) and (5) and Fig. 2 show that
over a workable frequency range, the velocity of the waves

(6)
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1

=
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Fig. 2. Velocity characteristic for transverse waves on a stub loaded
transmission-line matrix.
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along the lines for a diagonally propagating wave is V2
times the value for waves propagating in the direction of
the coordinates. Thus the effective velocities of the waves
traveling in the two directions is the same. As the fre-
quency increases, this relationship no longer holds, and
velocity errors are introduced into the method. The max-
imum error from this cause may be calculated using (4)
and (5) as shown in [27].

Tae LSE Mobt 1N A REctaANGULAR CAVITY

The simple inhomogeneous cavity of Iig. 3 is used to
test the new matrix by obtaining the resonant frequency
for the quasi-Hi; LSE mode. If the matrix stubs are
merely thought of as additional lumped capacitance, then
the line equations take their usual form [1], [2]:

vy, _ ;9
ox at
vy _ _ ;o
dz ot
oI, 7. vV,
e (O 9% (7
dx 9z ot
where

The appropriate expansion for Maxwell’s equations for
9/0y = 0is

on, _ _ ol

ox Nt

0B,  oH,

v _

0z ot
oH, 0H , oF,

— =e—0. (8)

0z oxr at

Equivalences between line and field parameters may be
made as usual and in particular the equivalence between
¢ and 2C is noted. Thus the problem of Fig. 3 is solved by
applying the variable capacitance matrix (2) with admit-
tances Y, assigned according to the position of nodes in
the cavity. The results for 100 iterations of the matrix are
shown in Table I for different lengths L of the cavity
with ¢, = 2.45.

Terminating the output impulse function after 100 itera-
tions introduces the possibility of a truncation error [2]
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Fig. 3. Two-dimensional inhomogeneous cavity.
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TABLE I
Quasi-Hyo LSE Mope IN RECTANGULAR GUIDE
Cavity Numerical Analytical Error Maximum Maximum
Be Truncation Velocity
Length @ Result Result Ervon Error
(a1) (81/2) (a1/%) % % %
5 1.265 0.078 1 0.079 1 1.3 0.4 2.0
6 1.198 0.069 2 0.069 6 0.6 0.6 1.6
7 1.134 0.062 5 0.063 0 0.8 0.8 1.2
10 0.964 0.051 8 0.051 8 0.0 1.2 0.9
20 0.602 0.081 3 0.041 5 0.5 1.8 0.5
& = 2.45,

and the table shows the maximum value this error can
take. The worst velocity error occurs in the dielectric and
its value, obtained from (4), is also shown in Table I.

Dierectric BouNparRY CONDITIONS

In the example of the previous section, the £ field in
the waveguide is equivalent to the voltage on the trans-
mission-line matrix. The variable capacitance available on
the matrix serves to provide a variable permittivity in the
waveguide. The matrix therefore not only provides the
correct velocity conditions for a dielectric but also gives
the correct boundary conditions at the air-dielectric inter-
face.

Sometimes it is necessary to make an H field in the
waveguide equivalent to the voltage on the transmission-
line matrix and in this case the variable capacitance is
equivalent to a variable permeability in the guide. There-
fore, for a dielectric-loaded waveguide, the velocity of
waves in the dielectric will still be correct, but the wave
impedance will not. The intrinsic impedance of the waves
on a matrix within a dielectric medium is a relative quan-
tity and it is only at the boundary between two media
that any correction is necessary. The correction may be
achieved by introducing boundary transmission and re-
flection coefficients similar to those used in random walk
techniques [37].

If, for waves on the matrix,

intrinsic impedance of medium 1

r =z T . . . -
intrinsie impedance of medium 2

and if Ty and Ty are the voltage reflection and trans-
mission coefficients of a pulse incident on medium 2 from
medium 1, then

I'n =

r r=1
21_1“—|—1
or
To = .
n = (9)

The cutoff frequency calculation for the quasi-Hy, LSE
mode provides an example of the use of these coefficients.
At cutoff, the waves propagate transversely and the prob-
lem can now be solved in the waveguide cross section.
Strictly, the problem is one dimensional and the height
of the guide in the y direction is arbitrary. Fig. 4 shows
the guide cross section in the z-y plane and this time the
H, field in the guide is equivalent to the voltage on the
matrix. Since the capacitance is now equivalent to per-
meability, the intrinsic impedance of the waves in the
slab is 4/2.45. The intrinsic impedance, however, is re-
quired to be 1/4/2.45. Correcting reflection and trans-
mission coefficients on the matrix are therefore introduced
according to (9) with r = 1/2.45.

Table 11 shows the result obtained, and it is compared
with a similar ealeulation, but for a medium of , = 4/2.45
and ¢ = 4/2.45. The velocity in such a medium is the
same as in the previous case, but the impedance is matched
to the air. The stub admittances for the dielectric are
therefore the same, but the correcting reflection and
transmission coefficients are for r = 1/4/2.45.

Table II also shows the result for the cutoff of the
dominant LSM mode (g, = 1, ¢, = 2.45) in square guide.
This result was obtained without the use of boundaries
of symmetry by exciting the guide with an ¥ field perpen-
dicular to the dielectric—air interface and taking a similar
field component for the solution.

ResuLts ror GuibEs wiTH DIELECTRIC STEPS

The method is demonstrated by applying it to the
waveguide configuration of Fig. 5. Results for the cutoff
frequency of the dominant mode are shown in Table IIT
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Fig. 4. Cross section of waveguide with dielectric slab.

TABLE II
Cutorr oF LSE anp LSM MobEes IN SQUARE WAVEGUIDE
Mode [ €. Numerical Analytical
Result Result
(A1/2) (AL/X)
LSE 1 2.45 0.037 21 0.037 30
LSE /2.45 V2.45 0.038 89 0.038 98
LSM 1 2.45 0.038 38 0.038 50

Dimensions: 10A1; maximum velocity error: 0.5 percent. Five-
hundred iterations of matrix.
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Fig. 5. Cross section of waveguide with dielectric ridge.

TABLE III

Curorr or DoMiNANT Mopg 1N DieLEcTRIc RIDGE WAVEGUIDE

Numerical
Result

g

Results from
Schlosser and Unger

g

*o.01 (approx).

Maximum
Velocity Error

2 1.303 1.31 0.1
3 1.176 1.18 0.2
4 1.102 1.11 0.2
6, 1.012 1.02 0.3
8 0.968 0.98 0.3

Five-hundred iterations of matrix. ¢ = 10Al.
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and comparison is made with values obtained from curves
calculated by Schlosser and Unger [4]. Since the domi-
nant mode is an H-type mode (at cutoff), correcting
transmission and reflection coefficients have been used at
the dielectric boundaries. For the number of nodes chosen
(120) the resulting values of A1/X are small (of the order
of 0.01) and decrease in magnitude as ¢, increases. The
velocity error is therefore small even for ¢, = 8.

As indicated in [27], there is no difficulty in obtaining
higher order modes using the transmission-line matrix
method and the cutoff frequencies for these for ¢, = 2 are
shown in Table IV. Since the modes in dielectric loaded
waveguide are a distorted version of those in a homo-
geneous guide, the mode classification of the latter is used
to Indicate the mode type.

The field configurations in Fig. 6 are calculated using
the resonant frequency of a particular mode obtained
from Table IV. The field solution is built up for every
node on a cumulative basis after each iteration of the
matrix. The computer storage required is somewhat less
than usual since the impulse function for a particular
node is not stored. The computer running time is slightly
longer because of the additional trigonometrical calcula~
tions performed.

Finally, a two-dimensional waveguide problem involv-
ing diffraction at a dielectric step has been solved. In this
case the propagation is down a waveguide as in [ 5], rather
than across it. IFig. 7 shows frequency runs for the im-
pedance, in magnitude and phase, looking into a dielectric
loaded guide which is terminated in a discontinuity to
free space impedance. Since the transmission-line matrix
method is impulsive, all the points used to produce each
of these curves were obtained from single sets of iterations
of the matrix.

DiscussioN AND CONCLUSION

The transmission-line matrix method provides a means
of obtaining the output impulse function at an observa-
tion point in a two-dimensional space in which wave
propagation is taking place. This is achieved in the com-
puter by storing the amplitude of pulses entering each
node in a transmission-line matrix. With these amplitudes
initially at zero, the matrix is then excited at selected
source points with delta function pulses. As time pro-
gresses, pulses travel from onc node to the next along the
transmission lines and are transmitted and reflected at
each node according to (2). Each iteration in the com-
puter represents a time interval of Al/c, and the new
values of the five incident impulse amplitudes for each
node are calculated for each iteration. The network, there-
fore, becomes filled with pulses as waves spread out from
the sources and are reflected at the boundaries. The output
impulse function at a particular point in the matrix is
simply obtained by observing the stream of pulses as
they pass through the point in question. The solutions
for all frequencies within the passband of the matrix are
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Fig. 6. (a) Field pattern of H, for H;, mode in dielectric ridge
waveguide. (b) Field pattern of E. for Es mode in dielectric
ridge waveguide.

now simultaneously available in this impulse function.
For example, the impulse function for a closed structure
(Fig. 5, for example) contains not only the resonant
periodicity of the dominant mode but also the resonant
periodicities for all higher order modes which are excited
by the impulsive source. Similarly, for the impedance
calculations of Fig. 7, the entire curves, both for magni-
tude and phase, are contained in a single impulse function.
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TABLE 1V
Higaer OrpER MoDES IN DieLEcTRIC RIDGE WAVEGUIDE
Mode Numerical
Result
(AL/2)
TEp g 0.020 73
TEgy 0.035 77
My, 0.037 21
TEz 0.044 51
TEy, 0.045 07
™y, 0.053 49
TE2) 0.058 44
TE3q 0.065 63
e = 2.0. Five-hundred iterations of matrix.
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(b)
Fig. 7. (a) Magnitude of the impedance in a waveguide with a

dielectric step. (b) Angle of the impedance in a waveguide with
a dielectric step.

The required information is extracted from the output
impulse function by taking the Fourier transform. Since
the function consists of a series of regularly spaced dis-
crete amplitudes, the transform is taken by a simple
multiply-and-add routine in the computer.

Many of the numerical techniques currently available
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for waveguide analysis are based on computer methods
for solving analytical equations. This is often done by a
vdriational approach as in the method of finite elements
[6], [7] and the approach by ¥nglish [8]. In these
methods, the solution of a large number of simultaneous
equations is required. This arises because some parameter
of the formulation (such as frequency) is sought which
enables all of the analytical equations to fit the boundary
conditions simultaneously. By operating in the time do-
main, the solution of simultaneous equations is avoided,
and there is no problem of convergence since a bound on
the error for a given number of iterations may be calcu-
lated [2].

The accuracy of this method has been shown to compare
favorably with the methods of finite elements and finite
differences for homogeneous ridged waveguide in [2]. The
accuracy of results in this application also compares favor-
ably with the cutoff calculations for inhomogeneous wave-
guides by finite element analysis [7]. The process of
taking the Fourier transform means that the field func-
tion between nodes is automatically cireular, and it is
this feature that accounts for the slightly better accuracy
of this method compared with methods like finite differ-
ences and finite elements. Dalv and Helps [97] have shown,
for example, that the use of lihear internodal fuhctions
limits the accuracy of finite elements and that increased
accuracy may be obtained by the use of higher order
polynomials.

In rectangilar waveguides, the use of circular functions
will, of course, give exact answers [ 2], but it would also
seem that circular internodal functions give good results
for waveguides with nonsinusoidal field distributions.

The caleulation of higher order modes in the method of
finite elements requires direct solution of the eigenvalue
problem. In this case, the storage requirements for finite
elements are considerably larger than for the transmission-
line matrix method. For example, the transmission-line
matrix method basically requires 5 numbers per node;
the storage required for the 10 X 12 matrix of Fig. 5 is
therefore 600 number locations. A further 500 locations
is required to store the output impulse function. This
means that calculations of this type may be carried out
on a small computer. Computer running time is difficult
to estimate but about 1 min of running time is required
on a Honeywell DDP 516 computer in order to obtain a
500 iteration impulse function on a 10 X 10 matrix.

On the single matrix used here, account can only be
taken of a voltage component and two current compo-
nents which allows equivalences to be drawn for only
three components in Maxwell’s equations. The method
therefore can only be used in cases where Maxwell’s equa-
tions split into two independent sets of equations of three

215

variables. Only calculations involving the general propaga-
tion of two-dimensional modes or the cutoff frequency of
three-dimensional nodes can be performed. This is a dis-
advantage of this method compared to others. However,
in many engineering applications the information provided
by this method is useful, particularly since results for
higher order modes are easily obtained. Also, the method
of finite elements may not be a very convenient technique
for calculating modes above cutoff. For this reason, the
method of modal approximation [107 has been developed
to use cutoff calculations made by the method of finite
elements to obtain results above cutoff. In that the trans-
mission-line matrix method obtains the cutoff frequency
and the field values at cutoff for a mode, it may also be
extended in this way. i

The main advantage of the transmission-line matrix
method over other methods is the ease with which it is
formulated and programmed, and also the close relation-
ship the method has with the actual mechanism of propa-
gation. ¥or example, the results of this paper, and for
[1] and [27], have been calculated from a single universal
program about 150 lines of Fortran, which accepts con-
duction and dielectric boundaries (for reasonably compli-
cated geometries) as input data. The calculations have
been performed on a 12 kbyte computer with no backirig
store. Also, the analogy between propagation on the
matrix and propagation in free space hds allowed loss
calculations to be performed easily [11].
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